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Simultaneous manifestations of the 2D van Hove
singularity and the Fermi surface nesting in the acoustic
soft phonon mode of3-NiAl alloys

I 1 Naumov ard O | Velikokhatniy
Institute of Physics of Strength and Materials Science, 634021, Tomsk, Russia

Received 21 July 1997

Abstract. The experimentally observed composition and uniaxial-stress dependences of the
TA, soft phonon mode i — Ni,Al1_, alloy have been interpreted using numerical calculations

of the electronic band structure, elastic shear constangeneralized susceptibility (¢) and
different sections of Fermi surface as a basis. It is shown that the main features of these
dependences are attributable to two different band structure peculiarities, namely, to Fermi
surface nesting and 2D van Hove singularity in the density of states. Whereas the nesting
vector Zy fixes the position of a dip (Kohn anomaly) in the Fahonon branch, the separation
between the Fermi level and the energy of the 2D van Hove singularity governs the softening
(hardening) of this branch as a whole.

1. Introduction

Recently the NiAl;_, shape memory alloy system has been the subject of intensive
investigations ([1-6] and others). Cooling of the alloys having compositions in the
range 060 < x < 0.64 induces a8 — 7R — 3R chain of structural transformations
[1,3,4], whereg is an initial high-temperature structure of the CsCl type, 7R is a
‘sevenfold’ intermediate structure and 3R is a low-temperature martensitic structure of the
L1, type. Above the temperature of the onset of the> 7R transition there is a whole
series of premartensitic anomalies [1] and, particularly, softening of the elastic constant
C’' = (C11 — C12)/2 associated with the long-wave behaviour of the transverse acoustic
vibration mode §£0] TA, [7,8]. Furthermore,C’ also softens strongly with increasing
Ni concentration,x [7,8]. The TA phonon mode demonstrates an anomaly at some
intermediate wave vectog,, = (27/a)[&., £, 0] which depends on the composition
(a is a lattice parameter) [9]. The quantigy,, which characterizes the position of the
anomaly, falls rapidly with increasing; asx increases, for example, from 0.50 to 0.625
it changes from approximately 1/4 to 1/6 respectively (it should be notedétratl/2
corresponds to the boundary of the Brillouin zone (BZ)). Besides, the entigeclifve
softens with increasing.

The neutron scattering experiments on a single crystal ggylo 375 [6] revealed
the phonon anomaly to show a strong dependence on uniaxial stress applied along the
[001] direction as well. Namely, the dip in the TAalong HE1, £1, 0] directions (i.e.
perpendicularly to the applied stress) deepens and shifts fpm 0.14 to &, = 0.18
as one proceeds from zero stress to stress of 85 MPa. Furthermore, the eantitarfé
softens with increasing stress.
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Shapiroet al [9] suggested a hypothesis that the phonon anomaly is of electronic nature
and connected with ‘nesting areas’ of the Fermi surface (FS), separated by Veeter @, .

To verify this hypothesis Zhao and Harmon [10] within the method of Varma and Weber
[11] calculated the phonon dispersion curves ofMi_,. They found that the phonon
anomaly in TA arises from the strong electron—phonon interaction and its locagipn,
really is close to the nesting vectok 2 spanning extended cylindrical parts of the FS in the
seventh band. Moreover, they were able to reproduce the experimentally observed function
g (x) over the whole range of concentratiansthis result was obtained independently by
Naumovet al [12] (see also [15]).

The main aims of this paper are (1) to present new evidence that the dip in the TA
phonon branch is of the Kohn type and (2) to show that in addition to parallel flat segments
of the Fermi surface there is another electronic peculiarity, which strongly affects the TA
phonon branch as well—the 2D van Hove singularity in the density of stai®s As
the separatiom = ¢r — ¢ between the Fermi level and the energy of the 2D van Hove
singularity ¢c decreases the BAphonon mode softens as a whole. At the same time
the nesting vector B- spanning two flat pieces of FS controls the position of the Kohn
anomaly,q,,. To attain this the observed composition and uniaxial-stress dependences of the
TA, phonon branch are analysed in detail. Keeping in mind that thedigpersion curve
correlates well [10, 12] with the generalized susceptibility for a non-interacting electronic
systemy (q) (in particular, the dip in TA precisely corresponding to a maximumitiq)),
we calculate onlyy (q), rather than the TAdispersion curve itself. At the same time we
calculate the band structure energy contribution to the elastic corStawhich is directly
related to TA in the limit of long wavelengthsg(— 0).

The paper is organized as follows. In section 2 the details of the numerical calculations
are presented. In section 3 we calculate the band structure energy contribution to the
elastic shear constants’ for various compositions:; the physical origin of softening
of C’ with increasingx is discussed. In section 4 the responses of the nesting vector
2k and generalized susceptibility(q) to the composition are analysed and compared
with the observed composition dependence 0f.TAn section 5 the transformations of
the band structure ang(q) caused by uniaxial squeezing of theyjisAlg 375 crystal are
considered and compared with the corresponding transformation,ofHiAally, in section 6
we (1) summarize our conclusions about the connection between the peculiarities of the
electronic structure and behaviour of the phonon mode under discussion and (2) discuss the
2D van Hove singularity effects in a phonon spectrum as compared with 3D ones.

2. Computational details

To calculate the band structure, elastic const@nand generalized susceptibility(q) the
standard linear muffin-tin method (LMTO) with so-called combined correction terms has
been used [13]. The local-density approximation as formulated by Barth and Hedin [14]
was employed to account for the exchange and correlation. The LMTO basis included 3d,
4s and 4p functions for Ni and 3s, 3p and 3d functions for Al. Similar to [10], [12] and [15]
we used a rigid-band model, treating the electron energy spectigkn of the partially
disordered alloy NiAl;_, as that of totally ordered RioAloso; the substitution of the Ni

for Al is supposed to lead only to a change in the number of conduction electrons

and thus in the Fermi levelr. The functionZ(x), as in [10], [12] and [15], was chosen

by recognizing the fact that each Ni atom maingaan d occupation close to 9.0, so that
every ‘excess’ (relative to the 50-50 alloy) Ni atom brings a single electron to the rigid
bands. This giveZ (x) = 13— (x — 1/2)(6 — 1) and the Fermi levetr is lowered as the
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x increases. Note that the rigid-band model with the chosen fori(ef describes well
the concentration dependences of the optical spectra [15] and the phonon anomaly in the
TA,; KKR-CPA calculations also are consistent with the model used (see [10]). This points
to the validity of the model and the fact that in the,Ni;_, alloys the ‘concentrational’
smearing of Fermi surface does not prevent its showing up in physical characteristics.

The band structure energy contribution to the elastic shear conStaist calculated
similarly to that in [16] and [17] from the formula

;3 9% (k) e (k) \
¢ =4;[/ P 0teth —ende— [ (P20 Y sie, 0 - epra] ®

wherey is the parameter setting the strain matix

A+ 3 0 0

g:( 0 L+ y)v3 0 ) @)
0 0 A+y)23

According to this matrix the integration ovérin (1) is performed in the irreducible part

(1/16) of the tetragonal BZ and 1276 refereriepoints are used in this part.

In the calculations we have not dealt with the uniaxial stress, as such. We merely
accounted for the stress through the tetragonal distoftien (1—c/a) (c/a is the tetragonal
ratio), taking into consideration that in experiment [§]ranged up to 0.021. Since in the
experiment the lattice was strained with hardly any volume chaaqg&(—%sxx, Exx = Eyy),
all the calculations at differen have been performed under constraint that the atomic
volume 2 = a?c/2 = constant. The lattice constamtcorresponding ta = 0.5 andA =0
was taken to be 5.442 [8].

The generalized susceptibility of non-interacting electrons,

2Q JFE k)1 = flex(k+ q)]
dk
(2)3 / ; ev(k+q) — (k)

is calculated using the highly precise analytic tetrahedron method [18]; to reach high

precision the irreducible (1/48 in the case of a cubic and 1/16 in the case of a tetragonal
lattice) part of the BZ is divided into 3375 and 10 125 tetrahedra, correspondingly.

©)

x(q@) =

3. x-dependence ofC’

Let us consider first the energy band structure of the allgy®il ¢ 50 containing 13 valence
electrons per unit cell (figure 1). Five initial bands are filled, with the sixth and seventh
bands being partially occupied. The band structure is characterized by a wide s—p energy
band of Al, which is intersected by a narrow d band, associated with Ni and loc@&ey/
below ¢r. Above the Fermi levekr and below the d band the (k) curves have the
characteristic form of almost-free electrons, but slightly betgwthey become significantly
flatter because of mixing of the d(estates of Ni with the p states of Al. As a result, on
their way, moving from the X to the M and R points shown in figure 2 band 7 practically
has no energy dispersion, which leads to a small but sharp peak in the density of the electron
statesn(e) at the energyyx located slightly (by~0.6 eV) belower. All the other factors
being the same, this peak would be an ordinary 3D van Hove singularity, but the lack of
electronic dispersion turns it into the 2D one.

In view of its importance one needs to consider this question in more detail. The XR and
XM lines are those of intersection of two symmetry planes, so that the transverse electron
velocity V, (k) = (n x Ve(k)) equals zero along themm(is the unit vector tangent to the
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Figure 1. Electronic band structure and density of states of the all@ysdil o s0.

lines). In this connection the dispersion curves (their parts) of the seventh band along XR
and XM can be represented in the form [17]

e(k) = e1(kr) + i + 5 4)
2ma(ky)  2m3(ky)
e1(k1) = ex + B(ka) (5)

ky < k1 < kg, B = ¢ep — &y, |B] < W (W is the band width). A8 — 0, the singular
contribution ton(e) takes the form

Sn(e) o O(e —ex) 5|gn(m2(k:)) mom3a > 0 (6)
In|e —ex| momsz < 0.

As the analysis shows, along XM,m3 > 0 anddn(s) is proportional tod (e — ex), but
along XRmom3z < 0 anddén(s) ~ In|e — ey, i.e. it is more singular as compared with the
first case. In any case the 2D singularityrife) given by (6) is stronger than the usual
3D one proportional tofn0(£n)]¥? (n = e — ex, O(x) = 1 for x > 0, andf(x) = 0O for

x < 0).

The calculated band structure energy contribution to the elastic shear coiStamd
density of states at the Fermi levelcr) are plotted versus concentration in figure 3. It
is easy to see that the Fermi lewgl passes through a 2D van Hove singularityniéz)
at x = 0.632, which corresponds to the change in topology of the FS in the seventh band,
namely, to breaking its coherency along the [100]-type directions. At this concentration
C’ has a sharp minimum due to the second term in (1) which is directly relateck (9.

So, upon going fromx = 0.50 to x = 0.632 the constan€’ softens considerably which
is consistent with experiments: over thisinterval C’ is lowered by a factor of 2.2 [7] or
even of 14 [8] (if thex-dependence of”’ is extrapolated above = 0.605).

The fact that the proximity of Fermi level to the 2D van Hove paigt noticeably
manifests itself in the elastic constafit and, consequently, in the long-wave part of the
TA, curve is quite natural and is in conformity with a great number of works in which the
influence of 3D van Hove points on elastic constants has been investigated (e.g. [15] and
[19]). The most surprising fact in our case of 2D singularity, however, is that it affects
significantly the entire TA dispersion curve (see sections 4 and 5).
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Figure 2. Brillouin zones of the cubic, CsCl (a) and tetragonal (b) structures.

4. x-dependence ofx(q)

The susceptibilitieg( (q) (g || [110]) calculated for various are shown in figure 4(a). In
the case of the stoichiometric alloy & 0.50) the functiony (q) has a broad maximum
at¢ = 1/4. However, asc increases this maximum becomes higher and narrower and its
position shifts toward lower values &f for example, atr = 0.60 it already corresponds

to & =1/7.

The analysis of the partial contributions shows that the singularityy @f) under
discussion is due to 7 7 electron transitions, or, in other words, due to the nesting
properties of the FS in the seventh band (intraband nesting). The nesting vektors 2
together with sections of the Fermi surface in the seventh band are shown in figure 5 for
the alloys withx = 0.50 andx = 0.60. With their centres on XM lines they span extended
cylindrical parts of the Fermi surface, the generators of which can be seen in the planes with
k, = £0.3(2r/a) (figure 5(a,c)) and whose radii are in the plane witht k, = 0.5(2r /a)

(figure 5(b,d)). With increasing from 0.50 to 0.60 the radii of cylindrical parts increase,
narrowing the peak of (q). The vector Zr then decreases because of reduction in the
number of occupied states in the seventh band. xAiscreases the whole curve(q)

is shifted upwards (figure 4(a)) and this fact is not due to flat pieces of FS separated
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Figure 3. Band structure contribution to the elastic constanhtand density of states at the
Fermi level against the concentration of Ni.
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Figure 4. (a) Generalized electron susceptibiljtyq) of the Ni,Al1_, alloys withx = 0.50 (1),
0.60 (2) and 0.625 (3); (b) experimentakdependence of the soft vectays (continuous curve,
according to [9]) and calculated dependence of the nesting vedgrec 2 (dashed line).

by the constant wave vectork2. The growing of theyx(q) as a whole is caused by
intraband (7— 7) electron transition within the thik-layers adjacent to the BZ faces with

k. = +t7/a(001) having the X point at their centres. Along these layers (especially along
the lines close to XR) the seventh band, as noted above, has very little energy dispersion in
the vicinity of . In such a case the approximatien(k) — ¢, (k + q) ~ V, (k) - q is valid

over a wide range off, and, according to (3)x(q) ~ 1/(Vi(k) - q), that is, it becomes
higher, as the electron velocily, (k) = Ve, (k) tends to zero. This explains why the entire
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M

Figure 5. Fragments of the Fermi surface sections inAi_, alloys with x = 0.50 (a, b)
andx = 0.60 (c,d); (a,c) sections in the planks= +0.3(27/a); (b,d) k, + k, = 0.5(27 /a)
planes.

x (@) curve grows withxy until the Fermi levekr passes the 2D singularity (or near to this
moment).

There is good reason to think that the 2D van Hove pejnteveals itself in the TA
phonon branch mainly through the screening of the valence electrog(ginrather than
through electron—phonon matrix coupling. Indeed, according to Varma and Weber [11], the
critical contributionsw?(q) to the frequency squareg?(q) approximately can be written
as follows:

2Q
(27)3

2 F k)L — fenk + @)]

7
exlk 4+ q@) —ex(k) )

Sw?(q) x —

/ k| V, (k) — V(K + )l

wherex = 7 andV,* (k) is a projection of the velocitWe; (k) on the axis orthogonal tq.
Since the seventh band in the vicinityf is almost dispersionle3g* (k) ~ V,* (k+q) ~ 0
and the electron—phonon coupling matrix eleny‘,mrq ~ |V (k) -V, (k+q)1? ~ 0. If we
take this small matrix element simply to be constant, thef(q) reduces to the formula
of x(q) (3). So, the 2D van Hove singularity should show upcif(q) predominantly
through x (q). If this were so, the frequency(q) would soften with increasing (q).
Such a correlation does take place: the enjig) curve elevates, whereas the entire
TA, dispersion curve drops with [9]. In the limit of long wavelengths¢( — 0) this
correlation has already been discussed in the previous sections; indegtkrats to zero,
x(q) = n(ep) and pw?(q)/q°> — C' (p is the density).
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It is evident from figure 4(b) that the dependence of the nesting veckgréc2 is close
to the corresponding dependence of the ‘soft-mode’ wave vegtars) of TA,. It is such
a correlation that allowed the authors of [10], [12] and [15] to treat the anomaly jna$A
of the Kohn type and relate it to the diameteks:2 It is worth noting that, in parallel with
the nesting itself, strong electron—phonon interactions, as shown by Zhao and Harmon [10],
also favour the formation of a dip in TA

5. Uniaxial-stress dependence of(q)

Prior to discussing the results of numerical calculations, let us consider some pure geometric
aspects of the problem. Under the influence of tetragonal distattitime initial (in a cubic
lattice) highly symmetrical [110]-type directions become non-equivalent and break into two
groups. Four directions of the first groug1, +1, 0] lie in the planes, perpendicular to
the extension direction [001], and eight directions of the second gratip { +a/c] and
[0, £1, +a/c]) have a projection on this axis. In the case of no strain={ 0) the nesting
vector Zy is centred, as already noted, on the line XM, at the point situated approximately
between the points X and M. In going from a cubit £ 0) to a tetragonal lattice £ 0)
the XM line must be related to the three lines XM, ZR and XR (figure 2). Consequently,
in the distorted crystal the original nesting vectdsz2must be split into three centred on
the mentioned lines. It can be easily shown that only the vectegscntred on the XR-
type lines can be parallel to the first, [110]-type directions (figure 2). At the same time
only the vectors By centred on the ZR- and XM-type lines can be parallel to the second,
[0, £1, +a/c]- and [*1, O, +a/c]-type directions, so that along these directions the initial
vector Zr must be split into two.

The A-dependence of the maximum i (qg) along the [110]-direction in the
Nige25Al0.375 alloy is shown in figure 6. One can see that the maximuny(g) shifts
in the direction of higher wave vectogg The entire curve shows rather an interesting
behaviour: at light loads it moves up; however, beginning with= 0.03, it starts shifting
down dramatically. Along the direction of the second type, UQ:/c], figure 7) x(q)
behaves quite differently: the maximum pfq) shifts to the left and the entire curve shifts
down (exclusive of the region of smajl, where x (q) increases untilA is, again as high
as 0.03).

As analysis shows, the moving of the maximum jidiqg) in opposite directions for
q | [1,1,0]andq | [0, 1,a/c] arises from the increasing and decreasing of the nesting
vectors Zy (in magnitude), centred on the XR and ZR lines correspondingly (figure 8).
With increasingA the energy at the X point, as evident from figure 9, drops, but that
at the point Z mounts relative to the-, so that the Br || [1, 1, O] elongates and the
2kr || [0, 1, a/c] contracts; in doing so the former correlates with the dip in the [IA0]
phonon curve [6] (figure 6(b)).

As previously mentioned, in actuality there must be two nesting vectors parallel to the
[0,1, a/c] direction. This is true (figure 8(d)), but the nesting witk2centred on the
XM line does not show itself noticeably in(qg)—it leads only to a weak maximum shown
in figure 7. The nesting corresponding t&2 with its centre on the ZR line shows up
more strongly due to expanding of the nested areas witfiigure 8(c,d)) and involving
the electronic states which are closer to the critical energisee below).

The A-dependences gf (q) as a whole, again, are caused by the proximity oto the
2D van Hove singularity. The transformation of the density of states in thg o375
alloy as the tetragonal deformatioh increases is shown in figure 10. It is seen that an
initial 2D van Hove peak splits into two, the first of which moves away frgm but the
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Figure 6. (a) Generalized electron susceptibilify(q) along [110] in Nbe2sAlp375 for

A =0.0 (1), 0.01 (2), 0.02 (3), 0.025 (4), 0.03 (5) and 0.04 (6); (b) experimex@dependence

of the soft vectorsy,, (continuous curve, according to [6]) and calculated dependence of the
nesting vectors Br (dashed line).
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Figure 7. The same as in figure 6, but along [0a/c]. Arrows point to the maxima connected
with the nesting vectorskZ-, centred on the ZR and XM lines.

second approaches and then passes throughAt =t 0.025. This moment is very close
to that when the whole (q) (q || [110]) reaches the highest position = 0.03). Let us
consider this correlation in more detail.

In the original cubic lattice, as mentioned above, the 2D van Hove peak comes from
the k-lines with V; (k) ~ 0 in the vicinity of ex, i.e. from the XM and XR lines located
on the faces of BZ. In the tetragonal lattice thdines with nearly constant energy (k)
still remain; namely, they are along the directions ZR, ZA, XR and XM. In this edsg
passes through the 2D van Hove singularitiess aggoes through the, or ¢, energies;
this explains why the initial van Hove peak splits into two (figure 10). Adncreases
one of the 2D van Hove energies,, approachesr, but other,e,, moves away from
it. So, the think-layers withV, (k) ~ 0 ande¢, (k) =~ e appear; these layers adjoin the
BZ faces withk, = +7/a(0,0, a/c) and contain the Z points. The electronic transitions
7 — 7 within thesek-layers give contributions only t@ (¢) along the [110], rather than
along the [01, ¢/a] and [1 O, c/a] directions. This explains why the whole(q) curve
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Figure 8. Fragments of the Fermi surface sections ig &¥sAl o375 alloy with A = 0.025 (a, b)
and A = 0.020 (c, d); (a) sections in the planks= +0.3(27/c); (b, d) kx + k, = 0.5(27 /a)
planes; (c)k, = 0 planes.

Figure 9. Seventh electronic band in f\25Alp 375 under A = 0.025.

(g || [110]) grows with increasing\ until A = 0.03. OnceA has reached the val@e0.03,
the crucialk-layers withV, (k) =~ 0 disappear and the entipe(q) curve falls. Note that
in the case ofg || [0, 1, c/a] (or [1,0,c/a]) x(q) correlated withn(er) only for long
wavelengths ¢ ~ 0); that is trivial: x (0) is simply n(sr). For ‘large’ ¢ (¢ > 0.1(27/a))

x (q) correlates with the separation between the Fermi leyeand the energy of the van
Hove singularitye, (note,!) and, therefore, decreases with the applied strain.
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Figure 10. Density of states of the alloy Rli25Al0.375 underA = 0.0 (1), 0.01 (2), 0.02 (3),
0.025 (4), 0.03 (5) and 0.04 (6).

The results under discussion are, again, consistent with the experiment [6]. First, the
elevation of the maximum iy (q) (g || [110]) asA increases makes intelligible why the dip
in the TA; [110] phonon branch along the same direction deepens. Second, the increasing of
the nesting vectorRr- along [110] explains the shifting of the phonon dip to a larger vector
(figure 9(a, b)); of course, this fact favours once more the view that the phonon anomaly is
none other than a Kohn one. Third, the growthxafy) (¢ || [110]) as a whole with the
applied stress explains the experimentally observed softening of the entifd IT&] curve
as it is, again, due to screening vidq). The latter is enhanced as the Fermi leyegl
moves towards the higher-energy 2D van Hove singulatity,

6. Discussion and conclusion

The calculations presented in sections 3, 4 and 5 indicate convincingly that there are two
different electronic peculiarities which manifest themselves simultaneously and strongly in
the TA, phonon mode in theg-NiAl;_, alloy. One such peculiarity presents the flat
pieces of Fermi surface which can be joined by the constant vegtgr iR gives rise to a
maximum in the susceptibility function and, correspondingly, to the dip in thg [TAQ]
phonon branch. Another electronic feature is the 2D van Hove singularity in the density
of states which affects thg (¢q) and, therefore, the TAphonon branch for ally. Of
particular interest is a case when uniaxial stress (along [001]) is applied. In this case these
two electronic peculiarities manifest themselves in, T#long the [110]- and [10, a/c]-

([0, 1, a/c]-) directions quite differently.

We do not know any works in which the van Hove singularity effects in the phonon
spectrum have been considered for the case of the 2D singularity. At the same time,
these effects have been studied quite rigorously for the case of the 3D singularity [20, 21].
Dagens [20] was the first to show that as the Fermi leyehpproaches the 3D van Hove
point ¢, the phonon frequency squared(q) gains, in particular, the non-analytical part
Sw?(q) =~ |n|¥?(1 — 6(£n))(n = e — &¢), Which exists at one side of the Fermi surface
topology changer{ — +0, orn — —0) and for allg. Moreover, he has concluded that
an average over the phonon spectrum (such as a phonon spectrum njefhgmtiso has
the non-analytical contribution-n%? at both sidesi{ — 40). All these results have been
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refined by Vaks and Trefilov [21]. First, they found the ‘one-sided’ anoaR(q) ~ |n|%/?

to be true only for ‘large’q > g5 ~ njlt/z, whereny = £nf(£n). For smallg < gs the

anomaly becomes stronger, namedy?(q) ni/zqz, which is in accordance with the

fact that the singular contribution to the elastic modidl;; ~ ni/z [19]. In the second
place, using a simplified exactly soluble model, they, in contrast to Dagens, discovered the
phonon averagéw”) not to contain any singular contributions; this question invites further
investigation.

Although the manifestation of the van Hove singularity in the phonon spectrum is not
thoroughly clear even for the case of the 3D singularity, we do point out some changes in
w(q) as one goes from the 3D to the 2D singularity. First, the 2D-singularity effects in
w?(q) are much stronger than those for the 3D one. Indeed, for, say, long wave9)
the singular parsw?(q) ~ |n|Y/? for the case of the 3D singularity, while for the case of
the 2D one it becomes stronger (formally, infinite):In |n|. Such a change is natural: the
2D van Hove singularity can be presented as a great many of the 3D ones merged together.
Second, for the case of the 2D singularity the entire phonon dispersion curves gain the
critical contributiondw?(q) ~ $n(sr) along theg-lines parallel to those along which the
electron bands;(q) have no energy dispersioiV{(g) = 0). For the case of the 3D
singularity the similar non-analytical part (proportional|td/?) holds for allg > g5 and,
hence, practically does not depend ¢1i21]. Finally, we believe that for the case of the
2D singularity a singular contribution to the averages over the phonon spectrurawfike
is distinct from zero. Such a contribution in the case of the 3D singularity, as discussed
earlier, seems to be zero [21].

Of course, our analysis of the 2D van Hove singularity effects in thgpgifonon branch
is only semiqualitative. Further direct first-principles calculations of the lattice dynamics
and rigorous analytical consideration are strongly desired here. The Ni—Al alloy system does
not provide an exotic example where the effects under discussion are essential. The phonon
spectrum of the B2 TiAu-based alloys, for example, also must be strongly influenced by the
2D van Hove singularity—this is seen from the band structures of the TiAu system [22].
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