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Simultaneous manifestations of the 2D van Hove
singularity and the Fermi surface nesting in the acoustic
soft phonon mode ofβ-NiAl alloys
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Institute of Physics of Strength and Materials Science, 634021, Tomsk, Russia
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Abstract. The experimentally observed composition and uniaxial-stress dependences of the
TA2 soft phonon mode inβ−NixAl 1−x alloy have been interpreted using numerical calculations
of the electronic band structure, elastic shear constantC′, generalized susceptibilityχ(q) and
different sections of Fermi surface as a basis. It is shown that the main features of these
dependences are attributable to two different band structure peculiarities, namely, to Fermi
surface nesting and 2D van Hove singularity in the density of states. Whereas the nesting
vector 2kF fixes the position of a dip (Kohn anomaly) in the TA2 phonon branch, the separation
between the Fermi level and the energy of the 2D van Hove singularity governs the softening
(hardening) of this branch as a whole.

1. Introduction

Recently the NixAl 1−x shape memory alloy system has been the subject of intensive
investigations ([1–6] and others). Cooling of the alloys having compositions in the
range 0.60 6 x 6 0.64 induces aβ → 7R → 3R chain of structural transformations
[1, 3, 4], whereβ is an initial high-temperature structure of the CsCl type, 7R is a
‘sevenfold’ intermediate structure and 3R is a low-temperature martensitic structure of the
L10 type. Above the temperature of the onset of theβ → 7R transition there is a whole
series of premartensitic anomalies [1] and, particularly, softening of the elastic constant
C ′ = (C11 − C12)/2 associated with the long-wave behaviour of the transverse acoustic
vibration mode [ξξ0] TA2 [7, 8]. Furthermore,C ′ also softens strongly with increasing
Ni concentration,x [7, 8]. The TA2 phonon mode demonstrates an anomaly at some
intermediate wave vectorqm = (2π/a)[ξm, ξm, 0] which depends on the compositionx
(a is a lattice parameter) [9]. The quantityξm, which characterizes the position of the
anomaly, falls rapidly with increasingx; as x increases, for example, from 0.50 to 0.625
it changes from approximately 1/4 to 1/6 respectively (it should be noted thatξ = 1/2
corresponds to the boundary of the Brillouin zone (BZ)). Besides, the entire TA2 curve
softens with increasingx.

The neutron scattering experiments on a single crystal of Ni0.625Al 0.375 [6] revealed
the phonon anomaly to show a strong dependence on uniaxial stress applied along the
[001] direction as well. Namely, the dip in the TA2 along [±1,±1, 0] directions (i.e.
perpendicularly to the applied stress) deepens and shifts fromξm = 0.14 to ξm = 0.18
as one proceeds from zero stress to stress of 85 MPa. Furthermore, the entire TA2 curve
softens with increasing stress.
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Shapiroet al [9] suggested a hypothesis that the phonon anomaly is of electronic nature
and connected with ‘nesting areas’ of the Fermi surface (FS), separated by vector 2kF ≈ qm.
To verify this hypothesis Zhao and Harmon [10] within the method of Varma and Weber
[11] calculated the phonon dispersion curves of NixAl 1−x . They found that the phonon
anomaly in TA2 arises from the strong electron–phonon interaction and its location,qm,
really is close to the nesting vector 2kF spanning extended cylindrical parts of the FS in the
seventh band. Moreover, they were able to reproduce the experimentally observed function
qm(x) over the whole range of concentrationsx; this result was obtained independently by
Naumovet al [12] (see also [15]).

The main aims of this paper are (1) to present new evidence that the dip in the TA2

phonon branch is of the Kohn type and (2) to show that in addition to parallel flat segments
of the Fermi surface there is another electronic peculiarity, which strongly affects the TA2

phonon branch as well—the 2D van Hove singularity in the density of statesn(ε). As
the separationη = εF − εC between the Fermi level and the energy of the 2D van Hove
singularity εC decreases the TA2 phonon mode softens as a whole. At the same time
the nesting vector 2kF spanning two flat pieces of FS controls the position of the Kohn
anomaly,qm. To attain this the observed composition and uniaxial-stress dependences of the
TA2 phonon branch are analysed in detail. Keeping in mind that the TA2 dispersion curve
correlates well [10, 12] with the generalized susceptibility for a non-interacting electronic
systemχ(q) (in particular, the dip in TA2 precisely corresponding to a maximum inχ(q)),
we calculate onlyχ(q), rather than the TA2 dispersion curve itself. At the same time we
calculate the band structure energy contribution to the elastic constantC ′, which is directly
related to TA2 in the limit of long wavelengths (q → 0).

The paper is organized as follows. In section 2 the details of the numerical calculations
are presented. In section 3 we calculate the band structure energy contribution to the
elastic shear constantsC ′ for various compositionsx; the physical origin of softening
of C ′ with increasingx is discussed. In section 4 the responses of the nesting vector
2kF and generalized susceptibilityχ(q) to the composition are analysed and compared
with the observed composition dependence of TA2. In section 5 the transformations of
the band structure andχ(q) caused by uniaxial squeezing of the Ni0.625Al 0.375 crystal are
considered and compared with the corresponding transformation of TA2. Finally, in section 6
we (1) summarize our conclusions about the connection between the peculiarities of the
electronic structure and behaviour of the phonon mode under discussion and (2) discuss the
2D van Hove singularity effects in a phonon spectrum as compared with 3D ones.

2. Computational details

To calculate the band structure, elastic constantC ′ and generalized susceptibilityχ(q) the
standard linear muffin-tin method (LMTO) with so-called combined correction terms has
been used [13]. The local-density approximation as formulated by Barth and Hedin [14]
was employed to account for the exchange and correlation. The LMTO basis included 3d,
4s and 4p functions for Ni and 3s, 3p and 3d functions for Al. Similar to [10], [12] and [15]
we used a rigid-band model, treating the electron energy spectrumελ(k) of the partially
disordered alloy NixAl 1−x as that of totally ordered Ni0.50Al 0.50; the substitution of the Ni
for Al is supposed to lead only to a change in the number of conduction electronsZ(x)

and thus in the Fermi levelεF . The functionZ(x), as in [10], [12] and [15], was chosen
by recognizing the fact that each Ni atom maintains a d occupation close to 9.0, so that
every ‘excess’ (relative to the 50–50 alloy) Ni atom brings a single electron to the rigid
bands. This givesZ(x) = 13− (x − 1/2)(6− 1) and the Fermi levelεF is lowered as the
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x increases. Note that the rigid-band model with the chosen form ofZ(x) describes well
the concentration dependences of the optical spectra [15] and the phonon anomaly in the
TA2; KKR–CPA calculations also are consistent with the model used (see [10]). This points
to the validity of the model and the fact that in the NixAl 1−x alloys the ‘concentrational’
smearing of Fermi surface does not prevent its showing up in physical characteristics.

The band structure energy contribution to the elastic shear constantC ′ is calculated
similarly to that in [16] and [17] from the formula

C ′ = 3

4

∑
λ

[ ∫
∂2ελ(k)

∂γ 2
θ(ελ(k)− εF ) dk −

∫ (
∂ελ(k)

∂γ

)2

δ(ελ(k)− εF ) dk

]
(1)

whereγ is the parameter setting the strain matrixε̂:

ε̂ =
(
(1+ γ )1/3 0 0

0 (1+ γ )1/3 0
0 0 (1+ γ )−2/3

)
. (2)

According to this matrix the integration overk in (1) is performed in the irreducible part
(1/16) of the tetragonal BZ and 1276 referencek-points are used in this part.

In the calculations we have not dealt with the uniaxial stress, as such. We merely
accounted for the stress through the tetragonal distortion1 = (1−c/a) (c/a is the tetragonal
ratio), taking into consideration that in experiment [6]1 ranged up to 0.021. Since in the
experiment the lattice was strained with hardly any volume change (εzz = − 1

2εxx, εxx = εyy),
all the calculations at different1 have been performed under constraint that the atomic
volume� = a2c/2= constant. The lattice constanta corresponding tox = 0.5 and1 = 0
was taken to be 5.442 [8].

The generalized susceptibility of non-interacting electrons,

χ(q) = 2�

(2π)3

∫
dk
∑
λ,λ′

f(ελ(k))[1− f(ελ′(k + q))]
ελ′(k + q)− ελ(k) (3)

is calculated using the highly precise analytic tetrahedron method [18]; to reach high
precision the irreducible (1/48 in the case of a cubic and 1/16 in the case of a tetragonal
lattice) part of the BZ is divided into 3375 and 10 125 tetrahedra, correspondingly.

3. x-dependence ofC ′

Let us consider first the energy band structure of the alloy Ni0.50Al 0.50 containing 13 valence
electrons per unit cell (figure 1). Five initial bands are filled, with the sixth and seventh
bands being partially occupied. The band structure is characterized by a wide s–p energy
band of Al, which is intersected by a narrow d band, associated with Ni and located≈2 eV
below εF . Above the Fermi levelεF and below the d band theελ(k) curves have the
characteristic form of almost-free electrons, but slightly belowεF they become significantly
flatter because of mixing of the d (eg) states of Ni with the p states of Al. As a result, on
their way, moving from the X to the M and R points shown in figure 2 band 7 practically
has no energy dispersion, which leads to a small but sharp peak in the density of the electron
statesn(ε) at the energyεX located slightly (by≈0.6 eV) belowεF . All the other factors
being the same, this peak would be an ordinary 3D van Hove singularity, but the lack of
electronic dispersion turns it into the 2D one.

In view of its importance one needs to consider this question in more detail. The XR and
XM lines are those of intersection of two symmetry planes, so that the transverse electron
velocity V⊥(k) = (n×∇ε(k)) equals zero along them (n is the unit vector tangent to the
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Figure 1. Electronic band structure and density of states of the alloy Ni0.50Al 0.50.

lines). In this connection the dispersion curves (their parts) of the seventh band along XR
and XM can be represented in the form [17]

ε(k) = ε1(k1)+ k2
2

2m2(k1)
+ k2

3

2m3(k1)
(4)

ε1(k1) = εX + β(k1) (5)

kx 6 k1 6 kB , β = εB − εx , |β| � W (W is the band width). Asβ → 0, the singular
contribution ton(ε) takes the form

δn(ε) ∝
{
θ(ε − εX) sign(m2(k)) m2m3 > 0

ln |ε − εX| m2m3 < 0.
(6)

As the analysis shows, along XMm2m3 > 0 andδn(ε) is proportional toθ(ε − εX), but
along XRm2m3 < 0 andδn(ε) ∼ ln |ε − εX|, i.e. it is more singular as compared with the
first case. In any case the 2D singularity inn(ε) given by (6) is stronger than the usual
3D one proportional to [±ηθ(±η)]1/2 (η = ε − εX, θ(x) = 1 for x > 0, andθ(x) = 0 for
x < 0).

The calculated band structure energy contribution to the elastic shear constantC ′ and
density of states at the Fermi leveln(εF ) are plotted versus concentration in figure 3. It
is easy to see that the Fermi levelεF passes through a 2D van Hove singularity inn(ε)
at x = 0.632, which corresponds to the change in topology of the FS in the seventh band,
namely, to breaking its coherency along the [100]-type directions. At this concentration
C ′ has a sharp minimum due to the second term in (1) which is directly related ton(εF ).
So, upon going fromx = 0.50 to x = 0.632 the constantC ′ softens considerably which
is consistent with experiments: over thisx-intervalC ′ is lowered by a factor of 2.2 [7] or
even of 14 [8] (if thex-dependence ofC ′ is extrapolated abovex = 0.605).

The fact that the proximity of Fermi level to the 2D van Hove pointεX noticeably
manifests itself in the elastic constantC ′ and, consequently, in the long-wave part of the
TA2 curve is quite natural and is in conformity with a great number of works in which the
influence of 3D van Hove points on elastic constants has been investigated (e.g. [15] and
[19]). The most surprising fact in our case of 2D singularity, however, is that it affects
significantly the entire TA2 dispersion curve (see sections 4 and 5).
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Figure 2. Brillouin zones of the cubic, CsCl (a) and tetragonal (b) structures.

4. x-dependence ofχ(q)

The susceptibilitiesχ(q) (q ‖ [110]) calculated for variousx are shown in figure 4(a). In
the case of the stoichiometric alloy (x = 0.50) the functionχ(q) has a broad maximum
at ξ = 1/4. However, asx increases this maximum becomes higher and narrower and its
position shifts toward lower values ofξ ; for example, atx = 0.60 it already corresponds
to ξ = 1/7.

The analysis of the partial contributions shows that the singularity ofχ(q) under
discussion is due to 7→ 7 electron transitions, or, in other words, due to the nesting
properties of the FS in the seventh band (intraband nesting). The nesting vectors 2kF
together with sections of the Fermi surface in the seventh band are shown in figure 5 for
the alloys withx = 0.50 andx = 0.60. With their centres on XM lines they span extended
cylindrical parts of the Fermi surface, the generators of which can be seen in the planes with
kz = ±0.3(2π/a) (figure 5(a,c)) and whose radii are in the plane withkx + ky = 0.5(2π/a)
(figure 5(b,d)). With increasingx from 0.50 to 0.60 the radii of cylindrical parts increase,
narrowing the peak ofχ(q). The vector 2kF then decreases because of reduction in the
number of occupied states in the seventh band. Asx increases the whole curveχ(q)
is shifted upwards (figure 4(a)) and this fact is not due to flat pieces of FS separated
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Figure 3. Band structure contribution to the elastic constantC′ and density of states at the
Fermi level against the concentration of Ni.

Figure 4. (a) Generalized electron susceptibilityχ(q) of the NixAl 1−x alloys withx = 0.50 (1),
0.60 (2) and 0.625 (3); (b) experimentalx-dependence of the soft vectorsqm (continuous curve,
according to [9]) and calculated dependence of the nesting vectors 2kF (x) (dashed line).

by the constant wave vector 2kF . The growing of theχ(q) as a whole is caused by
intraband (7→ 7) electron transition within the think-layers adjacent to the BZ faces with
kz = ±π/a(0 0 1) having the X point at their centres. Along these layers (especially along
the lines close to XR) the seventh band, as noted above, has very little energy dispersion in
the vicinity of εF . In such a case the approximationελ(k)− ελ(k+ q) ≈ Vλ(k) · q is valid
over a wide range ofq, and, according to (3),χ(q) ∼ 1/(Vλ(k) · q), that is, it becomes
higher, as the electron velocityVλ(k) ≡ ∇ελ(k) tends to zero. This explains why the entire
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Figure 5. Fragments of the Fermi surface sections in NixAl 1−x alloys with x = 0.50 (a, b)
andx = 0.60 (c, d); (a, c) sections in the planeskz = ±0.3(2π/a); (b, d) kx + ky = 0.5(2π/a)
planes.

χ(q) curve grows withx until the Fermi levelεF passes the 2D singularity (or near to this
moment).

There is good reason to think that the 2D van Hove pointεX reveals itself in the TA2
phonon branch mainly through the screening of the valence electron viaχ(q) rather than
through electron–phonon matrix coupling. Indeed, according to Varma and Weber [11], the
critical contributionδω2(q) to the frequency squaredω2(q) approximately can be written
as follows:

δω2(q) ∝ − 2�

(2π)3

∫
d3k|V ⊥λ (k)− V ⊥λ (k + q)|2

f(ελ(k))[1− f(ελ(k + q))]
ελ(k + q)− ελ(k) (7)

whereλ = 7 andV ⊥λ (k) is a projection of the velocity∇ελ(k) on the axis orthogonal toq.
Since the seventh band in the vicinity ofεX is almost dispersionlessV ⊥λ (k) ≈ V ⊥λ (k+q) ≈ 0
and the electron–phonon coupling matrix elementgλλk,k+q ∼ |V ⊥λ (k)−V ⊥λ (k+q)|2 ≈ 0. If we
take this small matrix element simply to be constant, thenδω2(q) reduces to the formula
of χ(q) (3). So, the 2D van Hove singularity should show up inω2(q) predominantly
throughχ(q). If this were so, the frequencyω(q) would soften with increasingχ(q).
Such a correlation does take place: the entireχ(q) curve elevates, whereas the entire
TA2 dispersion curve drops withx [9]. In the limit of long wavelengths (q → 0) this
correlation has already been discussed in the previous sections; indeed, asq tends to zero,
χ(q)→ n(εF ) andρω2(q)/q2→ C ′ (ρ is the density).
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It is evident from figure 4(b) that the dependence of the nesting vectors 2kF (x) is close
to the corresponding dependence of the ‘soft-mode’ wave vectorsqm(x) of TA2. It is such
a correlation that allowed the authors of [10], [12] and [15] to treat the anomaly in TA2 as
of the Kohn type and relate it to the diameters 2kF . It is worth noting that, in parallel with
the nesting itself, strong electron–phonon interactions, as shown by Zhao and Harmon [10],
also favour the formation of a dip in TA2.

5. Uniaxial-stress dependence ofχ(q)

Prior to discussing the results of numerical calculations, let us consider some pure geometric
aspects of the problem. Under the influence of tetragonal distortion1 the initial (in a cubic
lattice) highly symmetrical [110]-type directions become non-equivalent and break into two
groups. Four directions of the first group [±1,±1, 0] lie in the planes, perpendicular to
the extension direction [001], and eight directions of the second group ([±1, 0,±a/c] and
[0,±1,±a/c]) have a projection on this axis. In the case of no strain (1 = 0) the nesting
vector 2kF is centred, as already noted, on the line XM, at the point situated approximately
between the points X and M. In going from a cubic (1 = 0) to a tetragonal lattice (1 6= 0)
the XM line must be related to the three lines XM, ZR and XR (figure 2). Consequently,
in the distorted crystal the original nesting vector 2kF must be split into three centred on
the mentioned lines. It can be easily shown that only the vectors 2kF centred on the XR-
type lines can be parallel to the first, [110]-type directions (figure 2). At the same time
only the vectors 2kF centred on the ZR- and XM-type lines can be parallel to the second,
[0,±1,±a/c]- and [±1, 0,±a/c]-type directions, so that along these directions the initial
vector 2kF must be split into two.

The 1-dependence of the maximum inχ(q) along the [110]-direction in the
Ni0.625Al 0.375 alloy is shown in figure 6. One can see that the maximum inχ(q) shifts
in the direction of higher wave vectorsq. The entire curve shows rather an interesting
behaviour: at light loads it moves up; however, beginning with1 ≈ 0.03, it starts shifting
down dramatically. Along the direction of the second type ([0, 1, a/c], figure 7) χ(q)
behaves quite differently: the maximum ofχ(q) shifts to the left and the entire curve shifts
down (exclusive of the region of smallq, whereχ(q) increases until1 is, again as high
as 0.03).

As analysis shows, the moving of the maximum inχ(q) in opposite directions for
q ‖ [1, 1, 0] and q ‖ [0, 1, a/c] arises from the increasing and decreasing of the nesting
vectors 2kF (in magnitude), centred on the XR and ZR lines correspondingly (figure 8).
With increasing1 the energy at the X point, as evident from figure 9, drops, but that
at the point Z mounts relative to theεF , so that the 2kF ‖ [1, 1, 0] elongates and the
2kF ‖ [0, 1, a/c] contracts; in doing so the former correlates with the dip in the TA2 [110]
phonon curve [6] (figure 6(b)).

As previously mentioned, in actuality there must be two nesting vectors parallel to the
[0, 1, a/c] direction. This is true (figure 8(d)), but the nesting with 2kF centred on the
XM line does not show itself noticeably inχ(q)—it leads only to a weak maximum shown
in figure 7. The nesting corresponding to 2kF with its centre on the ZR line shows up
more strongly due to expanding of the nested areas with1 (figure 8(c, d)) and involving
the electronic states which are closer to the critical energyεz (see below).

The1-dependences ofχ(q) as a whole, again, are caused by the proximity ofεF to the
2D van Hove singularity. The transformation of the density of states in the Ni0.625Al 0.375

alloy as the tetragonal deformation1 increases is shown in figure 10. It is seen that an
initial 2D van Hove peak splits into two, the first of which moves away fromεF , but the
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Figure 6. (a) Generalized electron susceptibilityχ(q) along [110] in Ni0.625Al 0.375 for
1 = 0.0 (1), 0.01 (2), 0.02 (3), 0.025 (4), 0.03 (5) and 0.04 (6); (b) experimental1-dependence
of the soft vectorsqm (continuous curve, according to [6]) and calculated dependence of the
nesting vectors 2kF (dashed line).

Figure 7. The same as in figure 6, but along [0, 1, a/c]. Arrows point to the maxima connected
with the nesting vectors 2kF , centred on the ZR and XM lines.

second approaches and then passes through it at1 ≈ 0.025. This moment is very close
to that when the wholeχ(q) (q ‖ [110]) reaches the highest position (1 ≈ 0.03). Let us
consider this correlation in more detail.

In the original cubic lattice, as mentioned above, the 2D van Hove peak comes from
the k-lines with Vλ(k) ≈ 0 in the vicinity of εX, i.e. from the XM and XR lines located
on the faces of BZ. In the tetragonal lattice thek-lines with nearly constant energyελ(k)
still remain; namely, they are along the directions ZR, ZA, XR and XM. In this casen(ε)

passes through the 2D van Hove singularities asεF goes through theεz or εx energies;
this explains why the initial van Hove peak splits into two (figure 10). As1 increases
one of the 2D van Hove energies,εz, approachesεF , but other,εx , moves away from
it. So, the think-layers withVλ(k) ≈ 0 andελ(k) ≈ εF appear; these layers adjoin the
BZ faces withkz = ±π/a(0, 0, a/c) and contain the Z points. The electronic transitions
7→ 7 within thesek-layers give contributions only toχ(q) along the [110], rather than
along the [0, 1, c/a] and [1, 0, c/a] directions. This explains why the wholeχ(q) curve
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Figure 8. Fragments of the Fermi surface sections in Ni0.625Al 0.375 alloy with 1 = 0.025 (a, b)
and1 = 0.020 (c, d); (a) sections in the planeskz = ±0.3(2π/c); (b, d) kx + ky = 0.5(2π/a)
planes; (c)kx = 0 planes.

Figure 9. Seventh electronic band in Ni0.625Al 0.375 under1 = 0.025.

(q ‖ [110]) grows with increasing1 until 1 ∼= 0.03. Once1 has reached the value∼=0.03,
the crucialk-layers withVλ(k) ≈ 0 disappear and the entireχ(q) curve falls. Note that
in the case ofq ‖ [0, 1, c/a] (or [1, 0, c/a]) χ(q) correlated withn(εF ) only for long
wavelengths (q ≈ 0); that is trivial: χ(0) is simply n(εF ). For ‘large’ q (q > 0.1(2π/a))
χ(q) correlates with the separation between the Fermi levelεF and the energy of the van
Hove singularityεx (not εz!) and, therefore, decreases with the applied strain.
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Figure 10. Density of states of the alloy Ni0.625Al 0.375 under1 = 0.0 (1), 0.01 (2), 0.02 (3),
0.025 (4), 0.03 (5) and 0.04 (6).

The results under discussion are, again, consistent with the experiment [6]. First, the
elevation of the maximum inχ(q) (q ‖ [110]) as1 increases makes intelligible why the dip
in the TA2 [110] phonon branch along the same direction deepens. Second, the increasing of
the nesting vector 2kF along [110] explains the shifting of the phonon dip to a larger vector
(figure 9(a, b)); of course, this fact favours once more the view that the phonon anomaly is
none other than a Kohn one. Third, the growth ofχ(q) (q ‖ [110]) as a whole with the
applied stress explains the experimentally observed softening of the entire TA2 [110] curve
as it is, again, due to screening viaχ(q). The latter is enhanced as the Fermi levelεF
moves towards the higher-energy 2D van Hove singularity,εz.

6. Discussion and conclusion

The calculations presented in sections 3, 4 and 5 indicate convincingly that there are two
different electronic peculiarities which manifest themselves simultaneously and strongly in
the TA2 phonon mode in theβ-NixAl 1−x alloy. One such peculiarity presents the flat
pieces of Fermi surface which can be joined by the constant vector 2kF ; it gives rise to a
maximum in the susceptibility function and, correspondingly, to the dip in the TA2 [110]
phonon branch. Another electronic feature is the 2D van Hove singularity in the density
of states which affects theχ(q) and, therefore, the TA2 phonon branch for allq. Of
particular interest is a case when uniaxial stress (along [001]) is applied. In this case these
two electronic peculiarities manifest themselves in TA2 along the [110]- and [1, 0, a/c]-
([0, 1, a/c]-) directions quite differently.

We do not know any works in which the van Hove singularity effects in the phonon
spectrum have been considered for the case of the 2D singularity. At the same time,
these effects have been studied quite rigorously for the case of the 3D singularity [20, 21].
Dagens [20] was the first to show that as the Fermi levelεF approaches the 3D van Hove
point εC , the phonon frequency squaredω2(q) gains, in particular, the non-analytical part
δω2(q) ≈ |η|3/2(1− θ(±η))(η = εF − εC), which exists at one side of the Fermi surface
topology change (η → +0, or η → −0) and for allq. Moreover, he has concluded that
an average over the phonon spectrum (such as a phonon spectrum moment〈ωn〉) also has
the non-analytical contribution∼η3/2 at both sides (η→ ±0). All these results have been
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refined by Vaks and Trefilov [21]. First, they found the ‘one-sided’ anomalyδω2(q) ∼ |η|3/2
to be true only for ‘large’q > qS ∼ η1/2

± , whereη± = ±ηθ(±η). For smallq < qS the
anomaly becomes stronger, namely,δω2(q) ∝ η

1/2
± q2, which is in accordance with the

fact that the singular contribution to the elastic moduliδCij ∼ η
1/2
± [19]. In the second

place, using a simplified exactly soluble model, they, in contrast to Dagens, discovered the
phonon average〈ωn〉 not to contain any singular contributions; this question invites further
investigation.

Although the manifestation of the van Hove singularity in the phonon spectrum is not
thoroughly clear even for the case of the 3D singularity, we do point out some changes in
ω(q) as one goes from the 3D to the 2D singularity. First, the 2D-singularity effects in
ω2(q) are much stronger than those for the 3D one. Indeed, for, say, long waves (q ∼ 0)
the singular partδω2(q) ∼ |η|1/2 for the case of the 3D singularity, while for the case of
the 2D one it becomes stronger (formally, infinite):∼ ln |η|. Such a change is natural: the
2D van Hove singularity can be presented as a great many of the 3D ones merged together.
Second, for the case of the 2D singularity the entire phonon dispersion curves gain the
critical contributionδω2(q) ∼ δn(εF ) along theq-lines parallel to those along which the
electron bandsελ(q) have no energy dispersion (Vλ(q) = 0). For the case of the 3D
singularity the similar non-analytical part (proportional to|η|1/2) holds for allq > qS and,
hence, practically does not depend onq [21]. Finally, we believe that for the case of the
2D singularity a singular contribution to the averages over the phonon spectrum like〈ωn〉
is distinct from zero. Such a contribution in the case of the 3D singularity, as discussed
earlier, seems to be zero [21].

Of course, our analysis of the 2D van Hove singularity effects in the TA2 phonon branch
is only semiqualitative. Further direct first-principles calculations of the lattice dynamics
and rigorous analytical consideration are strongly desired here. The Ni–Al alloy system does
not provide an exotic example where the effects under discussion are essential. The phonon
spectrum of the B2 TiAu-based alloys, for example, also must be strongly influenced by the
2D van Hove singularity—this is seen from the band structures of the TiAu system [22].
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